作者:魏朝阳
QQ:2494954796
Email:2494954796@qq.com
人类对扑翼研究了很久,至今理论还远不圆满。目前中国和世界对扑翼的研究热度高涨。小型和微型扑翼机已经有不少成品成功飞行,但效率远不理想,大型扑翼还没有真正的成功实践。
本文用经典力学定性定量地构建了一套新的飞行力学理论,能解决扑翼理论长期存在的多数疑难和困惑,重建扑翼理论基础,促成人造扑翼飞行器实践的新突破。
新提出的扑翼理论有以下特点:第一,主要面对巡航扑翼。(文中会叙述这样做的理由)。第二,全部理论都建立在成熟的经典力学理论之上,其中的飞行力学仅以定常空气动力学为基础。第三,首次从理论上定量地解释了巡航扑翼的力学关系,特别是高效率。
这套新的扑翼理论有两大部分,第一部分是理论推导,在原理未知的条件下,根据鸟类飞行可观测的特征和成熟的经典力学理论,后验式、倒逼式地推导出巡航扑翼的必要条件。这些推导结论由经典论据的成熟性和理论自洽性而具有定理的性质,是认识扑翼的基础。第二部分是提出了鸟类巡航扑翼方式和原理的新猜想,并用经典力学理论定量分析了其可行性和效率。
依据该理论提出的扑翼技术方案,具有较透明的技术见底性。
1. 理论推导出的巡航扑翼力学特性
这部分内容不考虑微观气动机理,对任何微观气动机理都适用。
1.1. 物理模型。
结构:翼的气动中心(可简称为翼)和主载荷质心(可简称为身)。二者可在纵垂面上相对运动。
翼的质量可忽略。身的气动作用可忽略。
力:外部的力有两个。综合气动力(包含阻力)作用于气动中心,重力作用于质心。为了考察动力效率和系统各部分的运动特征,须考虑质心对气动中心的拉力(可简称为对翼拉力)和气动中心对质心的拉力(可简称为对身拉力),这一对拉力互为反作用力。
1.2. 周期结算的力学关系
把长途飞行的常用速度下的宏观等速水平直线飞行称为巡航。这里“宏观”是不考虑一个扑翼周期内的速度、方向等的微观变化,但各个周期之间视为严格相同,各周期对应相位点状态严格相等。于是有以下结论:
结论一:在巡航扑翼中,综合气动力矢量的周期均值等于重力的反向矢量。
根据质量不变时合力矢量对时间的积分和速度矢量增量成正比、以及等速水平直线飞行时周期速度矢量增量为0的关系即可证。
结论二:在巡航扑翼中,对翼拉力矢量的周期均值等于综合气动力矢量的周期均值的反向矢量。(证同上)
结论三:在巡航扑翼中,对翼拉力矢量的周期均值等于重力矢量。这从前面两结论可推出。
以上以及类似地,是一套周期平衡关系。只要是水平等速直线飞行就必然成立。
1.3. 高效率对作动力和综合气动力的限制性要求
扑翼的自生动力等效为作用于翼的气动中心的对翼拉力的一部分,称为作动力。它和翼的气动中心相对于质心的运动速度的积,是作动功率。
为了和同质量、同气动特性的固定翼飞行器相对比,设想扑翼在外加牵引力时无动作的水平等速直线滑翔,以此时的飞行功率和上述扑翼作动功率之比作为一种比较功率。有:
η = P1/ P2 = v1 F1 / |v2 F2 | = v1 R / |v2 F2 | =
= v1(G /k )/ |v2 γ G | = 1/|ξ k γ |.
其中
η ——与固定翼同标准的比较效率。
P1 ——固定翼飞行功率。
P2 ——扑翼动力功率。
v1 ——飞行速度。
F1 ——飞行前拉力。
v2 ——翼气动中心相对于身质心的运动速度。
F2 ——作动力。或称变载力。自生动力对翼气动中心的拉力。
R ——飞行阻力。
G ——重力。
k ——升阻比,水平等速直线飞行时k = G / R。
γ ——变载比,γ = F2 / G。
ξ ——动飞比,ξ =| v2 / v1 |。可根据扑翼频率和幅度估算动飞比。
于是有:
结论四:对于已知动飞比 、升阻比的扑翼,达到和固定翼同标准的比较效率的某个值的必要条件是,变载比绝对值小于或等于比较效率、动飞比、升阻比三者绝对值之积的倒数,即:
| γ | ≤ 1/ |η ξ k |.
考虑数值,鸟类的升阻比约二、三十,巡航时的动飞比约0.1到0.4,若要达到0.9以上的比较效率,计算可知变载比的绝对值必须显著小于1,通常0.2~0.4。
上述推导是瞬时值。如果考虑周期均值,情况类似。
结论五:如果巡航扑翼效率较高,那么作动力的绝对值的周期均值就应远小于重力绝对值。通常小于重力的一半。这是结论四代入数值后的结论。
这个结论和前述结论三相结合,可知:
结论六:如果扑翼效率较高,说明身对翼的拉力除了作动力之外,必然还存在更大的不耗能的力。身对翼的拉力是作动力与这个不耗能力之和。
骨骼能为很多动物提供不耗能的支撑力。但考虑扑翼的动作方向和身对翼的拉力方向大致平行,更可能的是弹性力。从效率角度考虑,弹性力应和重力大体相当,也就是说在滑翔时只靠弹性力维持翅膀横向张开的角度,而不需要象人作吊环十支撑那样费力。
根据前述各结论,还可以得出一个很重要的结论:
结论七:巡航扑翼在全周期的综合气动力的垂直分量都是正值。也就是说,上挥也必须有正升力。
这可以用各种力的垂直分量的时间函数图像来说明。前述各结论,对于相应的垂直分量也都成立。某个力的周期均值正比于其周期积分,即图中的相应面积。见下两个图。
各个垂直分力的曲线可以按扑翼运动现象作假设,但要符合以下要求:
a. 根据结论三,对翼垂直拉力曲线的横轴以下面积减去横轴以上面积的差(代数积分),等于重力曲线(直线)和横轴之间的面积。
b. 垂直弹性力曲线的形态,如果不考虑变长的影响就是水平直线,如果考虑变长系数的影响,就和翼运动轨迹线的形态相似、上下反向。
c. 根据结论六,对翼垂直拉力曲线和垂直弹性力曲线之间的差就是垂直作动力。又根据结论五,垂直拉力曲线和垂直弹性力曲线之间面积之和(不论正负的绝对值积分),应显著小于重力曲线(直线)和横轴之间的面积。通常小于它的一半。
d. 根据结论二,忽略翼质量的条件下,垂直综合气动力曲线的形态,以横轴为对称轴基本对称于对翼垂直拉力曲线。它们的对称差仅是翼质量和翼垂直加速度的积。
用反证法。假设上挥时垂直综合气动力为负,见下图,根据要求d.,那么上挥时对翼垂直拉力就是向上的。根据要求a.,下挥时的垂直拉力就要向下更大。结果,垂直拉力曲线和弹性力曲线之间的面积,即垂直作动力绝对值积分,就无法显著小于重力线和横轴之间的面积了。
能够使作动力小到符合效率要求的情况,应如下图所示。
这些由假设效率倒推出来的结论,是实现高效率的必要条件。
1.4. 综合性提示
综合以上分析,虽然没有明确巡航扑翼的具体原理,但却给出了一些重要的提示。
第一,巡航扑翼的作动力和综合气动力,只能在一定范围变化。如下图。
这意味着,巡航扑翼并不需要特殊的、很大的综合气动力,而是较平稳的综合气动力。综合气动力太大,变化就大,相应地作动力也要增大,效率就不高了。鸟类的滑翔性能很好,这说明定常气动力对于它们的巡航扑翼也是足够用的。
而且,巡航所需要的综合气动力主要是向上的而不是向前的。飞行阻力只是重力的几十分之一。
第二,需要把巡航时动飞比显著小于1的情况,和飞行速度很慢时动飞比大于1的情况显著区别开来。
一切气动作用都依赖于翼和空气的相对运动,即依赖于翼轨迹形态。翼相对于空气的运动,是翼相对于身的运动和身相对于空气的运动的合成。尤其需要注意,合成运动的气动作用,不能用运动分量的气动作用来合成。
动飞比小的时候,翼相对于空气的运动轨迹的形态只能是小坡度的波状线,动飞比约为该轨迹俯仰角的正切函数。动飞比大的时候,翼相对于空气的运动形态则可能多种多样。所以,巡航和其它状态相比,扑翼作用原理会大不相同。
而所谓扑翼的高效率,也只可能存在于巡航状态。能巡航飞行几十小时的鸟,在非巡航的其它状态下坚持不了几十分钟甚至几十秒钟。人造扑翼如果要学鸟类飞行的高效率,首先并且主要地是学巡航扑翼。(如果要学鸟类飞行的灵活性,那么非巡航状态也没有高效率,而且为了非巡航状态的机动性所增加重量反而会降低巡航效率)。
2. 对巡航扑翼原理的猜想和定量分析
2.1. 小变载波状滑翔的巡航扑翼飞行方式
猜想的巡航扑翼方式有以下特征。
a. 波状:翼相对于身的上下运动,和整体的前飞运动,合成为翼相对于空气的类似三角波的翼轨迹。用巡航扑翼频率、幅度和飞行速度,可估算出动飞比,进而估算出巡航翼轨迹起伏角度约为一、二十度。(这个特征是观察结果)。
b. 滑翔:翼轨迹切线方向就是翼的实际迎流方向。翼弦线相对于翼轨迹的攻角,应该一直大于零升攻角(根据前述结论7),并一直小于失速临界角(根据综合提示1和小动飞比情况的猜想),以尽量减小综合气动力方向和迎流方向的法方向之间的特性角。
c. 变载:包括攻角和对翼拉力这两个量的配合变化。
翼下滑时,翼轨迹方向(迎流方向)低于水平前飞方向,因此相对于迎流方向稍有后倾的综合气动力,相对于前飞方向却可以是前倾的,此时增大攻角以增大综合气动力的值,即增大了其前向分量,同时配合地增大身对翼的拉力,即在重力的基础上施加一个加载力,以平衡综合气动力在对翼拉力方向上的分量。
翼上滑时,综合气动力方向必然后倾,此时减小攻角以减小综合气动力的值,即减小了其后向分量,同时配合地减小身对翼的拉力,即在重力的基础上施加一个减载力,以平衡综合气动力在对翼拉力方向上的分量。
加载力和减载力统称为变载力。
d. 身的运动:在保持身基本水平而维持高度势能的基础上,由于身和翼之间的拉力变化,必然会使身产生垂直加速度。因此,在翼下滑的过程中,身由于拉力大于重力而作凹曲线运动,在翼上滑时,身由于拉力小于重力而作凸曲线运动。
由于身的质量较大,这种起伏很小,但在有些鸟类飞行视频中可以看出来。特别是脖颈的蠕动,根据试验知其头部是保持稳定的,那么就是身在起伏,而且相位比翼的上下运动超前90度左右。
身的垂直起伏现象证明了半周期变载现象的客观存在。能成功飞行的人造扑翼机也都有这种半周期变载。问题是,在理论上没有认识到变载是飞行原理的重要成分,或者把变载视为直接起作用而不是配合攻角变化,在实践上则往往为了弥补攻角不准的缺陷而在无意中使变载量大得非常过分,严重降低效率。所以正确的原理要强调“小变载”。
这些特征如下图所示。图中将鸟身的部分向下移了,以便画出各个力。(未画翼和身之间拉力的水平分量。和作动方向垂直的力可以由骨骼等的滑动摩擦或摆动的斜拉筋来承受,也是非耗能的力)。
小变载波状滑翔克服阻力甚至能加速的原理的实质是:翼的垂直往复运动用来使翼的实际迎流方向往复地偏离整体运动方向,综合气动力方向往复地前倾和后倾,用前倾时加载、后倾时减载的方法,使前倾时的前向分力等于甚至大于后倾时的后向分力。
2.2. 扑翼各物理量的主要因果关系
见下图。飞行速度矢量和作动速度矢量合成为翼迎流速度矢量,调整作动速度可以使迎流方向不同于飞行方向。迎流方向和弦线方向构成攻角,调整弦线角度可以改变攻角。迎流速度矢量和攻角形成综合气动力矢量。综合气动力矢量、作动变载力、非耗能拉力共同形成对翼的作用力,因为翼的质量很小,为保持翼的运动状态需要合力基本平衡。重力、作动变载力、非耗能拉力共同形成对身的作用力,身在合力作用下有垂直或水平加速度,对飞行速度矢量和作动速度矢量有反馈影响。
作动速度矢量、作动变载力、弦线角度,是三个互相有独立性的主动操作量。
扑翼动力即变载力并不直接产生飞行所需要的力。飞行所需要的力,是由攻角而产生的综合气动力提供的。攻角并非由变载力产生。变载力用来在翼下滑或上滑的过程中配合综合气动力维持翼的状态。在忽略翼的质量的条件下,翼所受的合力理论上应为0。
而身所受的合力的垂直分量会使其轨迹稍有弯曲。身所受的合力的水平分量会使其加速或减速。
实现构想中的一种见另文[原创]差动变载人力扑翼构想中国扑翼机官网 http://www.puyiji.com/dispbbs.asp?boardid=12&ID=453&replyID=453
(续见3楼)
[此贴子已经被作者于2019/5/16 9:00:21编辑过]
|